DESIGNING RESILIENCE IN TRANSPORT PROTOCOLS

PROPOSAL FOR PH.D. DISSERTATION RESEARCH
Overview

- Introduction and Motivation
- Related Work
- Proposed Research
- Preliminary Results
Overview

- Introduction and Motivation
 - Communication Networks & Challenges
 - Related Disciplines
 - Cross-Layering
 - ResiliNets Architecture
 - PoMo Architecture

- Related Work

- Proposed Research

- Preliminary Results
Communication Networks

- Are pervasive in our society
- Used for daily communication
- Trusted with livelihoods, finances, and health
- Control essential services: power grid, EMS
- An increasingly attractive target for attacks
Challenges

- Unusual but legitimate traffic
- Wireless channel conditions
 - Bit errors
 - Intermittent & episodic connectivity
- Resource limitations of mobile nodes
- Attacks
- Misconfiguration
- Natural Faults
Disciplines

- Fault Tolerance (few, random)
- Survivability (many, intelligent)
- Dependability
 - Availability (instantaneous)
 - Reliability (long-term)
- Disruption Tolerance (interrupted connectivity)
Resilience

- Defined as: “The ability of the network to provide and maintain an acceptable level of service in the face of various faults and challenges to normal operation.”

- By implication, Resilience is a superset of FT, Survivability, Dependability, and Disruption Tolerance
Scope of Resilience

Faults and Challenges

- **Survivability**: many \(\vee \) targeted
- **Fault Tolerance**: (few \(\wedge \) random)
- **Traffic Tolerance**: legitimate, flash crowd, attack, DDoS
- **Disruption Tolerance**: environmental, delay, mobility, connectivity, energy

Robustness

- **Reliability**
- **Maintainability**
- **Safety**
- **Availability**
- **Integrity**
- **Confidentiality**
- **Auditability**
- **Authorisability**
- **Authenticity**
- **Nonrepudiability**

Measurement and Metrics

- **Security**
- **AAA**
- **Trustworthiness**
- **Dependability**
- **Performability**

Credit: [ResiliNets Group]
Cross-Layering 1

- Needed to support resilience
- Knobs influence behavior (e.g. FEC)
- Dials expose characteristics (e.g. BER)
- In band (header fields)
- Out of band (explicit signaling)
- NOT saying to throw away layering
 - Translucency principle
Cross-Layering 2

- Explicitly avoided in current Internet
- Implicitly essential to TCP
 - TCP infers congestion based on packet loss
 - RED based on this
- Implicit cross-layering insufficient
 - TCP assumes congestion for any loss event
 - Results in poor performance and inefficiency
ResiliNets Architecture

- Architecture for designing resilient networks
 - Motivational
 - Guides design
- Four Axioms
- Six-step Strategy D^2R^2+DR
- 18 Principles
ResiliNets Architecture

- Four Axioms
 - Inevitability of Faults
 - Understand Normal Operations
 - Expect Adverse Events and Conditions
 - Respond to Adverse Events and Conditions

- Six-step Strategy D²R²+DR

- 18 Principles
ResiliNets Architecture

- **Four Axioms**
- **Six-step Strategy D²R²+DR**
 - Real-time
 - Defend
 - Detect
 - Remediate
 - Recover
 - Background
 - Diagnose
 - Refine
- **18 Principles**
ResiliNets Architecture

- Four Axioms
- Six-step Strategy
- 18 Principles

service requirements
normal behavior
threat and challenge models
metrics
heterogeneity

resource tradeoffs
complexity
state management

self-protection
connectivity
redundancy
diversity
multilevel
context awareness
translucency

self-organising and autonomic
adaptable
evolvable

behavior

Credit: [ResiliNets Group]
PoMo Architecture

- Needs/enables x-layer transport layer
- PoMo: Postmodern Internetwork Architecture
- Funded by NSF under FIND program
- Thin internetwork layer (3.5)
- Enables heterogeneous internetworking
- Uses knobs and dials for cross-layering
PoMo Model
end-to-end communication with resilience as an inherent design property is necessary to meet specified service requirements in the face of various attacks and challenges.
Overview

- Introduction and Motivation
- Related Work
 - Transport Protocols
 - Disruption Tolerant Networking
- Proposed Research
- Preliminary Results
Related Work

- Transport Protocols
 - 4th layer of OSI model
 - Lowest level of end-to-end communication
 - Ideal service:
 - Zero delay
 - Zero errors
 - Infinite bit rate
 - Still working on achieving ideal service
Related Work

- **Transport Protocols**
 - General purpose
 - UDP
 - ISO-TP (TP0-TP4)
 - Application specific
 - RTP
 - NETBLT
 - TP++
 - TCP and derivatives
- **Disruption Tolerant Networking**
Related Work

- **Transport Protocols**
 - Flexible and composable, e.g. TP++
 - 3 traffic classes
 - ARQ for bit errors & congestion loss
 - FEC for congestion loss
 - TCP and derivatives, e.g. SCPS-TP
 - Error notification
 - Outage notification
 - Rate based flow control
Related Work

- Transport Protocols
- **Disruption Tolerant Networking**
 - Challenged network types
 - Terrestrial Mobile Networks
 - Exotic Media Networks: satellite, acoustic, LOS
 - MANET & Military Ad-Hoc
 - Sensor Networks
 - TCP for Space
 - Bundling protocols
Related Work

- Transport Protocols
- Disruption Tolerant Networking
 - Challenged network types
 - TCP for Space
 - TCPSat
 - SCPS-TP
 - Bundling protocols
 - IPN
 - DTN RG
Problem Statement

- Resilience not explicitly addressed in TP design
- Fixed error control mechanisms
- Minimal adaptability
- Connection state too fragile
- Limited or no explicit cross-layering
- No support for multipath
Overview

- Introduction and Motivation
- Related Work
- Proposed Research
 - Architecture and Design
 - 4-phase research plan
- Preliminary Results
Proposed Research

- Protocol Architecture and Design
 - Resilience Measures
 - Cross-Layering
 - Operational Modes (continuous or discrete)
- Research Plan
 - Resilience Principle Application
 - Algorithm Development
 - Simulation
 - Implementation
Proposed Research

- Protocol Architecture and Design
 - Resilience Measures
 - Metrics to characterize resilience of system
 - Work in progress by Abdul Jabbar
 - Cross-Layering
 - Knobs influence operation of lower layers
 - Dials pass info to higher layers
 - Operational Modes (continuous or discrete)
 - Multidimensional map accounting for network state and application needs
Proposed Research

Operational Modes

Requirement > Path capability
Path capability > Requirement

Can trade abundant resource for scarce (e.g. sacrifice bandwidth to reduce bit errors with FEC)
Proposed Research: Error Control Mechanism Tradeoffs

- Error Detection alone
 - Trades bandwidth for error detection
 - Open Loop

- FEC
 - Trades bandwidth for error correction
 - Open loop

- ARQ
 - Trades latency for error correction
 - Closed loop
Proposed Research: Error Control

- Error Control Example
- Alternatives
 - N: none
 - O: open loop (FEC)
 - C: closed loop (ARQ)
 - S&W, GB-N, SelRep
- Location
 - HBH
 - E2E
- App requirements
 - unreliable
 - quasi-reliable
 - reliable

Credit: [James P.G. Sterbenz & David Hutchison]
Proposed Research: Mechanisms

- **Error Control**
 - FEC and/or ARQ
 - E2E or HBH?
 - Explicit Congestion Notification (ECN)
 - Explicit Corruption Notification
 - Recoverable
 - Unrecoverable (ELN)
 - Explicit Outage Notification (EON)
 - Explicit Delay Notification (EDN)
Proposed Research: Mechanisms

- Multipath
 - Present given resilient topology (≥bi-connected)
 - Requires multipath routing
 - What to do and where to do it?
 - Transport layer or Network layer?
 - Aggregate bandwidth
 - Erasure Coding

- Geographic Diversity
 - Benefits of multipath + survivability
Proposed Research

- **Research Plan**
 - **Phase 1: Resilience Principles**
 - Service requirements, threat and challenge models, context aware, multilevel resilience, redundancy and diversity, resource tradeoffs
 - **Phase 2: Algorithm Development**
 - Explore interactions and tradeoffs of mechanisms
 - ECN, ELN, EON, EDN
 - Open and closed loop flow control
Proposed Research

- Research Plan
 - Phase 3: Resilient Transport Simulation
 - ns-2: open source, widely used
 - Experiment with mechanisms from phase 2
 - Challenge scenarios
 - Wired, MANET, and sensor realms
 - Phase 4: Resilient Transport Implementation
 - Validate simulation models from phase 3
 - Analyze real-word effects
 - Wired, MANET, & sensor realms
Research Contributions

- Theory
 - Service Requirement to Path State relationship
 - How do knobs and dials relate in multidimensional space?
 - How does this relate to metrics space?
 - Tradeoffs
 - Between layers
 - Within E2E layer

- Functional
 - Simulation models
 - Transport protocol implementation
Overview

- Introduction and Motivation
- Related Work
- Proposed Research
- Preliminary Results
 - Packet size adaptation
 - Cross-layer ns-2 architecture
 - PoMo E2E cross-layer framework
Preliminary Work

- Packet Size Adaptation
 - Simulation code to verify mathematical model
- Cross-layer Architecture for Simulation
 - Data structure in ns-2
- PoMo E2E Cross-Layering Framework
Preliminary Work

- Packet Size Adaptation
 - Selects optimal packet size given header length and BER
 - 4 fixed-size curves
 - Adaptive curve forms envelope of fixed-size curves

Credit: [Sarvesh Varatharajan]
Preliminary Work

- Packet Size Adaptation
- Cross-layer Architecture for Simulation
 - No packet content in ns-2 simulations
 - Need data structure to store knobs/dials
- PoMo E2E Cross-Layering Framework
Preliminary Work

PoMo E2E Cross-Layering Framework
Realms communicate via PoMo layer
Provides standardized cross-layering interface

PoMo Layering

Realm A (MANET) -> Realm B (IP) -> Realm C (Native PoMo)

Transport -> Internet

Network -> Link

Source -> Router -> PoMo Gateway

E2E Context

Realm Context

HBH Context

Destination
Timeline and Milestones

<table>
<thead>
<tr>
<th>ID</th>
<th>Task Name</th>
<th>Start</th>
<th>Finish</th>
<th>Duration</th>
<th>Q2 08</th>
<th>Q3 08</th>
<th>Q4 08</th>
<th>Q1 09</th>
<th>Q2 09</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Principle Application</td>
<td>7/2/2007</td>
<td>5/30/2008</td>
<td>48w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Algorithm Development</td>
<td>5/19/2008</td>
<td>8/15/2008</td>
<td>13w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Simple Simulations</td>
<td>6/2/2008</td>
<td>12/19/2008</td>
<td>29w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Complex Simulations</td>
<td>12/19/2008</td>
<td>3/19/2009</td>
<td>13w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Questions